Topic 2.1 Molecules to Metabolism				
2.1.U1 Molecular biology explains living processes in terms of the chemical substances involved.				
2.1.U4 Metabolism is the web of all the enzyme-catalysed reactions in a cell or organism.				
1. Outline the rel	Outline the relationship between genes (DNA) and polypeptides.			
	2. Outline what the term metabolic pathway means.			
_				
4. Describe the reductionist approach that a molecular biologist uses discover the working of a metabolic pathway.				
5. Explain why ultimately the reductionist approach used by molecular biologists might be a limited one.				
2.1.U2 Carbon atoms can form four covalent bonds allowing a diversity of stable compounds to exist.				
6. What type of bonds can carbon molecules form? And how does the strength of these bonds compare with other				
types of bond? 7. Explain why Carbon can form four bonds with up to four different atoms, and explain why.				
7. Explain why Carbon can form four bonds with up to four different atoms, and explain why.				
2.1.U3 Life is based on carbon compounds including carbohydrates, lipids, proteins and nucleic acids.				
8. Compare the key feature of the different groups of organic molecules by completing the table below.				
	Key features	Examples		
carbohydrates				
carbonyurates				
lipids				
proteins				
nucleic acids				

Name ______ Period _____ Date _____

- 2.1.U5 Anabolism is the synthesis of complex molecules from simpler molecules including the formation of macromolecules from monomers by condensation reactions.
- <u>2.1.U6</u> Catabolism is the breakdown of complex molecules into simpler molecules including the hydrolysis of macromolecules into monomers.
- 9. Distinguish between the terms anabolism and catabolism.

	anabolism	catabolism
Synthesis or		
Breakdown?		
Type of Reaction		
Substrates		
Products		
Water Produced or		
Used?		
Enzymes/Agent		
Involved		

10. Annotate the diagram below to complete your notes on anabolism and catabolism. In the carbohydrate section add a named example, include both the names of the molecules and enzymes.

Condensation makes bonds, Hydrolysis breaks bonds

2.1.A1 Urea as an example of a compound that is produced by living organisms but can also be artificially synthesized.

- 11. Vitalism is a theory that nowadays has no credit.
 - a. Describe the central tenant that Wöhler falsified.
 - b. Wöhler accidentally artificially synthesised urea, hence falsifiying vitalism. What compound was he trying to produce?
 - Accidental discoveries are a surprisingly common part of the development of scientific understanding.
 Referring to the IB guide identify which 'Nature of Science' points this example applies to.

2.1.S1 Drawing molecular diagrams of glucose, ribose, a saturated fatty acid and a generalized amino acid.

- 12. Draw the simplified (ring) structures of glucose and ribose. Number the carbon atoms correctly. Which sugar is a pentose? Which is a hexose? How are they named this way?
- 13. Octanoic acid is a fatty acid with the formula $CH_3(CH_2)_6COOH$. Draw the structure of molecule and explain why it is called a saturated fatty acid.
- 14. Draw the generalised structure of an amino acid. Label and annotate the diagram to show the different groups that comprise amino acids.

2.1.S2 Identification of biochemicals such as sugars, lipids or amino acids from molecular diagrams.

15. Which type of molecule is shown in the diagram to the right?

- 16. The diagrams below show various molecular structures.
 - a. Identify which of the diagrams represent:
 - i. the structure of glucose.
 - ii. the structure of an amino acid.
 - iii. the structure of fatty acids.
 - b. Discuss which of the molecules are most similar in structure.

$$CH_3$$
 — $(CH_2)_n$ — C OH

II.
$$\begin{array}{c|c} HOH_2C & O & H \\ \hline I & C & C \\ \hline I & H & H \\ \hline I & C & C \\ \hline I & I & OH \\ \hline OH & OH \\ \end{array}$$

$$\begin{array}{c|c} CH_2OH \\ \hline \\ C \\ \hline \\ H \\ H \\ \end{array}$$

III.

IV.
$$\begin{array}{c} H \\ N \\ \end{array} \begin{array}{c} R \\ O \\ \end{array}$$