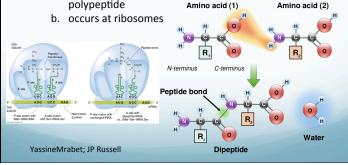
Topic 2 Molecular Biology

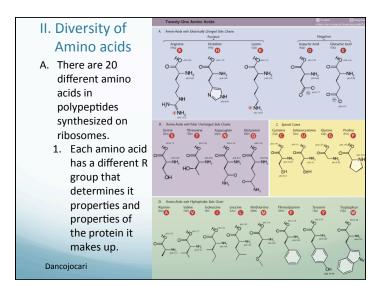
Topic 2.4 Proteins Essential idea: Proteins have a very wide range of functions in living organisms.

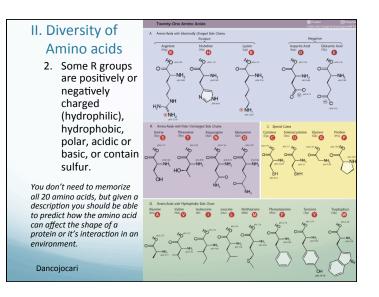
Understandings:

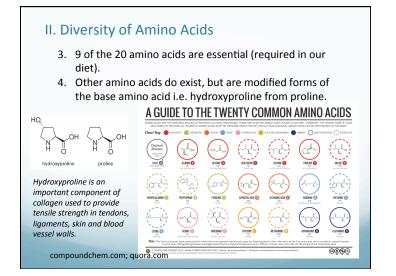
- 2.4.U1 Amino acids are linked together by condensation to form polypeptides.
- 2.4.U2 There are 20 different amino acids in polypeptides synthesized on ribosomes.
- 2.4.U3 Amino acids can be linked together in any sequence giving a huge range of possible polypeptides.
- 2.4.U4 The amino acid sequence of polypeptides is coded for by genes.
- 2.4.U5 A protein may consist of a single polypeptide or more than one polypeptide linked together.
- 2.4.U6 The amino acid sequence determines the threedimensional conformation of a protein.
- 2.4.U7 Living organisms synthesize many different proteins with a wide range of functions.
- 2.4.U8 Every individual has a unique proteome.

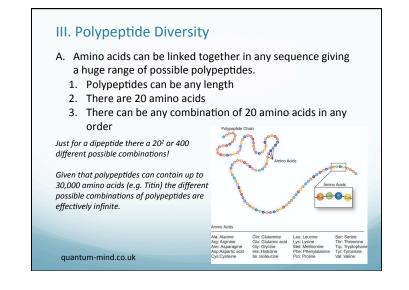
Applications:

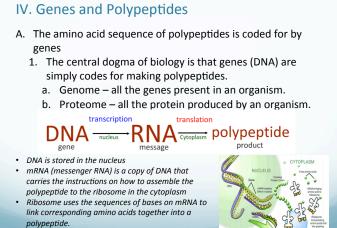

- 2.4.A1 Rubisco, insulin, immunoglobulins, rhodopsin, collagen and spider silk as examples of the range of protein functions.
- 2.4.A2 Denaturation of proteins by heat or by deviation of pH from the optimum.

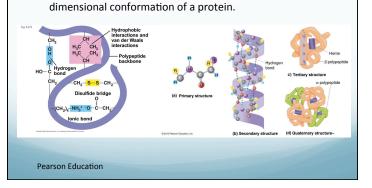

Skills


• 2.4.S1 Drawing molecular diagrams to show the formation of a peptide bond.

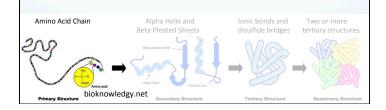

I. Amino Acids and Polypeptides

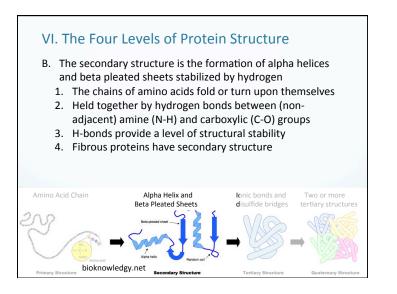

- A. Amino acids are linked together by condensation to form polypeptides.
- 1. Amino acids are linked by condensation
- a. results in a peptide bond forming a dipeptide or polypeptide
 Amino acid (1)
 Amino

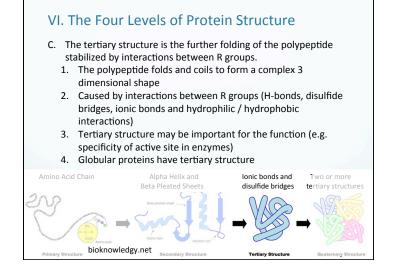




bioknowledgy.net; proteinsynthesis.org

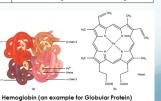

V. Proteins, Polypeptides and Conformation A. A protein may consist of a single polypeptide or more than one polypeptide linked together. B. The amino acid sequence determines the three-





polypeptide is the primary structure.

- 1. The order / sequence of the amino acids of which the protein is composed
- 2. Formed by covalent peptide bonds between adjacent amino acids
- 3. Controls all subsequent levels of structure


VI. The Four Levels of Protein Structure D. The quaternary structure exists in proteins with more than one polypeptide chain. 1. The interaction between multiple polypeptides or prosthetic groups 2. A prosthetic group is an inorganic compound involved in a protein (e.g. the heme group in hemoglobin) 3. Quaternary structures have combinations of fibrous and globular proteins Amino Acid Chain Alpha Helix and Two or more tertiary structures bioknowledgy.net

VII. Proteins are commonly described as either being fibrous or globular in nature.

Fibrous proteins have structural roles whereas globular proteins are functional (active in a cell's metabolism).

Properties	Fibrous Protein	Globular Protein	
Shape	Long and narrow	Rounded / spherical	
Role	Structural (strength and support)	Functional (catalytic, transport, etc.)	
Solubility	(Generally) insoluble in water	(Generally) soluble in water	
Sequence	Repetitive amino acid sequence	Irregular amino acid sequence	
Stability	Less sensitive to changes in heat, pH, etc.	More sensitive to changes in heat, pH, etc.	
Examples	Collagen, myosin, fibrin, actin, keratin, elastin	Catalase, haemoglobin, insulin, immunoglobulin	

In globular proteins the hydrophobic R groups are folded into the core of the molecule, away from the surrounding water molecules, this makes them soluble. In fibrous proteins the hydrophobic R

bioninja.au; Anatomy and Physiology

groups are exposed and therefore the

molecule is insoluble.

Primary Stru

organisms is unrivalled.

Function	Description	Key examples
Catalysis	An enzyme vital for the fixation of carbon dioxide during photosynthesis; There are thousands of different enzymes to catalyze specific chemical reactions within the cell or outside it.	rubisco
	Actin and myosin together cause the muscle contractions used in locomotion and transport around the body.	actin, myosin
Cytoskeleton	Tubulin is the subunit of microtubules that give animals cells their shape and pull on chromosomes during mitosis.	tubulin
Tensile strengthening	Fibrous proteins give tensile strength needed in skin, tendons, ligaments and blood vessel walls.	collagen
Blood clotting	Plasma proteins act as clotting factors that cause blood to turn from a liquid to a gel in wounds.	fibrinogen
•	Proteins in blood help transport oxygen, carbon dioxide, iron and lipids.	hemoglobin

VIII. Protein Functions

Nothing can compare with the versatility of proteins. Their functionality and usage in

Tertiary Structu

Quatemany Struct

Function	Description	Key examples
Cell adhesion	Membrane proteins cause adjacent animal cells to stick to each other within tissues.	integrins
Membrane transport	Membrane proteins are used for facilitated diffusion and active transport, and also for electron transport during cell respiration and photosynthesis.	sodium/potassium pumps
Hormones	Vital to the control of blood sugar; Hormones regulate processes within in the body	insulin
Receptors	Binding sites in membranes and cytoplasm for hormones, neurotransmitters, tastes and smells, and also receptors for light in the eye and in plants.	rhodopsin
Packing of DNA	Histones are associated with DNA in eukaryotes and help chromosomes to condense during mitosis.	histones
Immunity	This is the most diverse group of proteins, as cells can make huge numbers of different antibodies.	Immunoglobulins
Catching prey	A strong, fine, slightly elastic fiber produced by web- building spiders	spider silk